The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.

نویسندگان

  • Adam Ranson
  • Frank Sengpiel
  • Kevin Fox
چکیده

Ocular dominance plasticity is a widely studied model of experience-dependent cortical plasticity. It has been shown that potentiation of open eye responses resulting from monocular deprivation relies on a homeostatic response to loss of input from the closed eye, but the mechanisms by which this occurs are not fully understood. The role of GluA1 in the homeostatic component of ocular dominance (OD) plasticity has not so far been tested. In this study, we tested the idea that the GluA1 subunit of the AMPA receptor is necessary for open eye potentiation. We found that open eye potentiation did not occur in GluA1 knock-out (GluA1(-/-)) mice but did occur in wild-type littermates when monocular deprivation was imposed during the critical period. We also found that depression of the closed eye response that normally occurs in the monocular as well as binocular zone is delayed, but only in the monocular zone in GluA1(-/-) mice and only in a background strain we have previously shown lacks synaptic scaling (C57BL/6OlaHsd). In adult mice, we found that OD plasticity and facilitation of OD plasticity by prior monocular experience were both present in GluA1(-/-) mice, suggesting that the GluA1-dependent mechanisms only operate during the critical period.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Lifelong learning: ocular dominance plasticity in mouse visual cortex.

Ocular dominance plasticity has long served as a successful model for examining how cortical circuits are shaped by experience. In this paradigm, altered retinal activity caused by unilateral eye-lid closure leads to dramatic shifts in the binocular response properties of neurons in the visual cortex. Much of the recent progress in identifying the cellular and molecular mechanisms underlying oc...

متن کامل

NpgRJ_Nn_2008 1569..1577

Functional maturation of GABAergic innervation in the developing visual cortex is regulated by neural activity and sensory inputs and in turn influences the critical period of ocular dominance plasticity. Here we show that polysialic acid (PSA), presented by the neural cell adhesion molecule, has a role in the maturation of GABAergic innervation and ocular dominance plasticity. Concentrations o...

متن کامل

STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism.

Accumulating evidence points to a role for Janus kinase/signal transducers and activators of transcription (STAT) immune signaling in neuronal function; however, its role in experience-dependent plasticity is unknown. Here we show that one of its components, STAT1, negatively regulates the homeostatic component of ocular dominance plasticity in visual cortex. After brief monocular deprivation (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 38  شماره 

صفحات  -

تاریخ انتشار 2013